

A MULTI-LEVEL THRESHOLDING IMAGE SEGMENTATION USING NATURE-INSPIRED OPTIMIZATION ALGORITHMS **PRESENTED BY:** DR. AHMED ELNGAR DR. DOAA SHEBL BAHAA EL-DIN HELMY

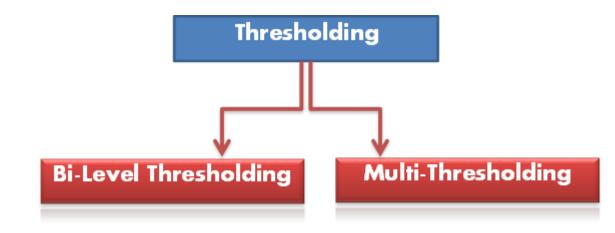
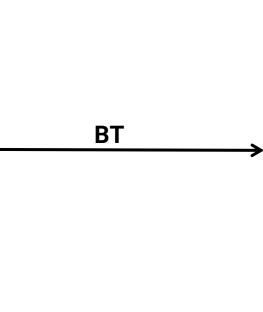
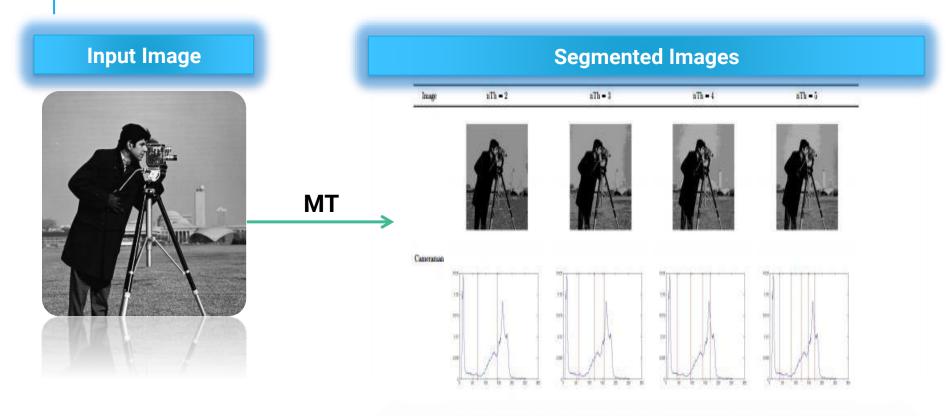

IMAGE SEGMENTATION

IMAGE SEGMENTATION (CONTINUED)

In computer vision, image segmentation is the process of partitioning a digital image into multiple homogenous segments[1-3].



When the image has segmented into two classes, the task is called Bi-level thresholding (BT) and requires only one (th) value, when pixels has separated into more than two classes, then the task is called as Multi-level Thresholding (MT) demands more than one (th) value.


Original Image

Segmented Image

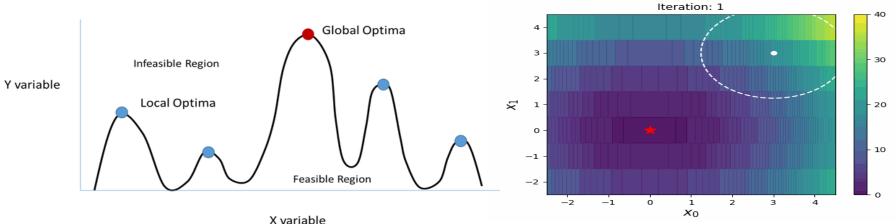
There are several methods used to find the optimal thresholding values such as Otsu 1979 [4] and Kapur's 1985 [5] methods.

OTSU'S OBJECTIVE FUNCTION

Otsu proposed a thresholding technique based on the maximum variance between classes. This methods is used to find the optimal threshold values that separate the image into multiple classes.

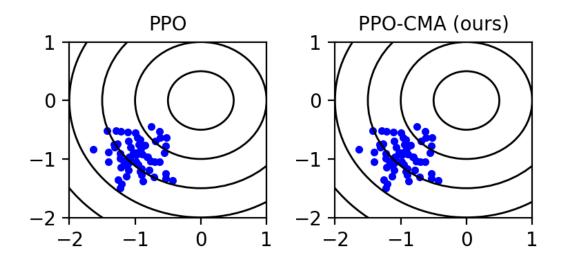
$$F_{\alpha su}(TH) = Max(\sigma_B^2(th))$$
 where $0 \le th \le L-1$ and $i = [1, 2, 3, ..., k]$

$$\sigma_B^2 = \sum_{i=1}^k \sigma_i = \sum_{i=1}^k \omega_1 (\mu_1 - \mu_T)^2$$

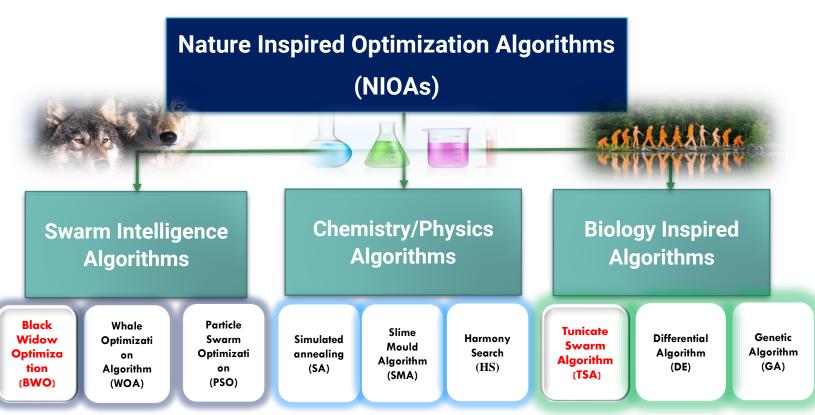

BI-LEVEL VS MULTI-LEVEL THRESHOLDING

These methods are suitable for bi-level thresholding and they can be easily extended to multi-level case.

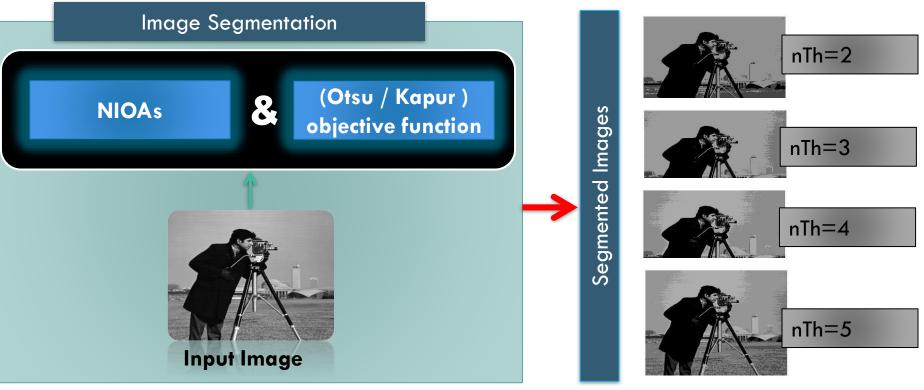
However the process of determining the optimal thresholds in case of multi-level is an exhaustive task [6].


BI-LEVEL VS MULTI-LEVEL THRESHOLDING (CONTINUED)

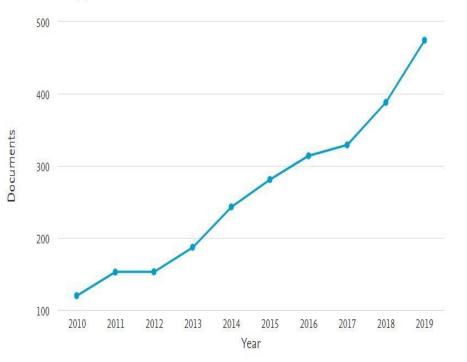
To avoid the thresholding problems, many researchers started to use Nature Inspired optimization algorithms (NIOA) to optimize the process of selecting the best thresholds [7].



NATURE INSPIRED OPTIMIZATION ALGORITHMS


NIOAs have been designed and utilized for tackling many problems because of their simplicity and easy implementation process[8-9].

NIOAS (CONTINUED)



NIOAS TACKLING MULTI-LEVEL THRESHOLDING PROBLEM

Number of publications of multi-level thresholding image segmentation over the last ten years, as announced by Scopus.

Documents by year

Distribution of multi-level thresholding image segmentation publications in several applications, as announced by Scopus.

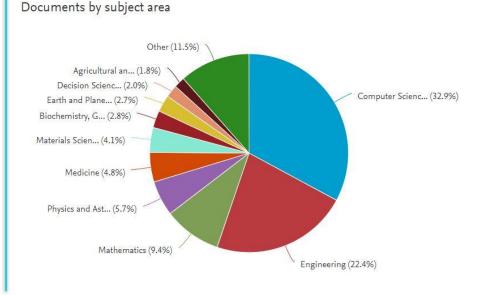


Table 1.1 Research works in image multi-level thresholding segmentation based natureinspired optimization algorithms

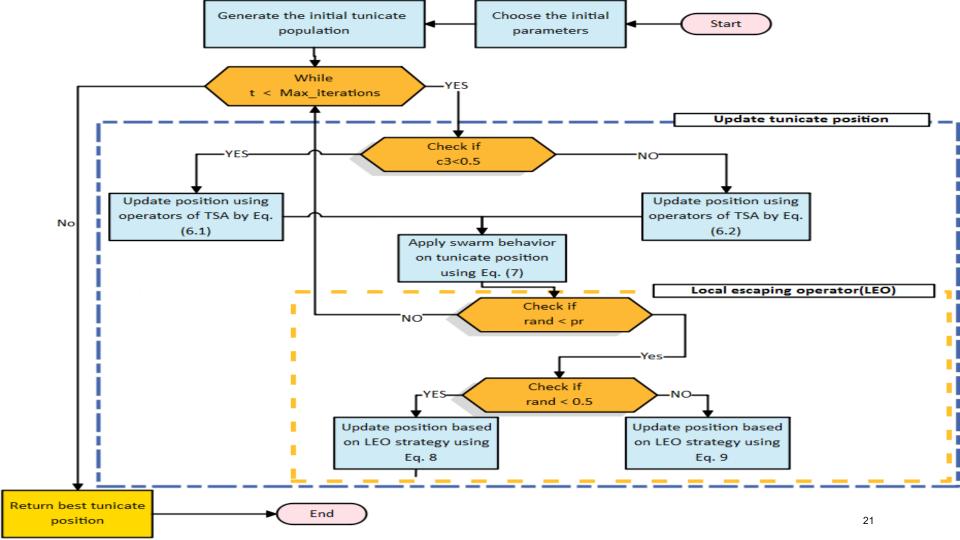
Refs.	Algorithms	Methods	Results
[109]	WOA and MFO	Otsu	 (1) Results indicated the superiority of the proposed method compared to other algorithms in all evaluation metrics usedf (2) MFO showed better results than WOA
[110]	NrQPSO	Kapur	Produces good results in terms of efficiency, effectiveness and robustness
[111]	EO	Kapur	Results indicated the superiority of the proposed method compared to other algorithms in all evaluation metrics used
[112]	IEPO	Kapur	 (1) Effective method for color image segmentation (2) Higher segmentation accuracy and less CPU time
[113]	HBM	Kapur	(1) Low computation time (2) Can rapidly achieve and efficient
[114]	ABC	Kapur	(1) Good results in terms of the computation time(2) Outperforms other algorithms in evaluation metrics

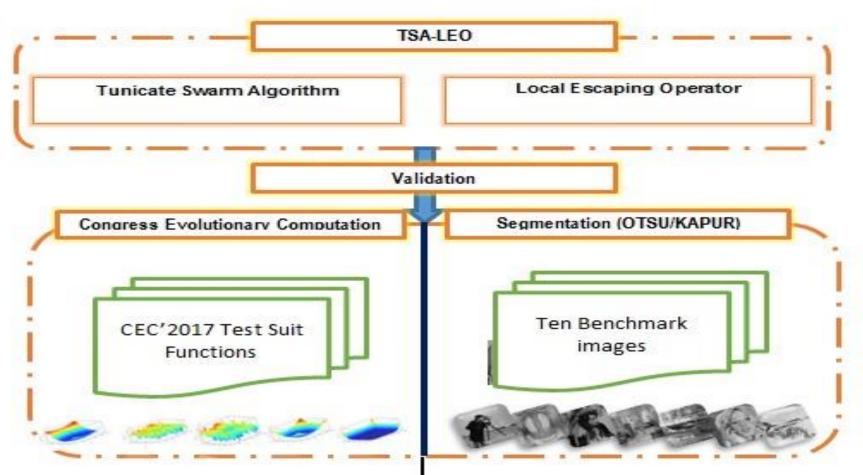
Table 1.1
Research works in
image multi-level
thresholding
segmentation
based nature-
inspired
optimization
algorithms

[88]	PSO and ABC	Kapur and Otsu	(1) Both algorithms are scalable (2) Less CPU time
[117]	BF	Kapur and Otsu	Produces a promising results
[88]	PSO and ABC	Kapur and Otsu	(1) ABC performs better when thresholds is greater than two under Otsu's results (2) Both algorithms produces good results under Kapur's results.
[118]	EMO	Kapur and Otsu	Results indicated the superiority of the proposed method compared to other algorithms in all evaluation metrics used
[123]	MKTOA	Kapur and Otsu	 Provide a promising results in the evaluation metrics used in literature (2) Ability to conquer than MPSO, DE and BF
[119]	BA	Kapur and Otsu	 Provide a competitive results compared to other algorithms
[120]	PLBA	Kapur and Otsu	(1) Outperforms BFO and quantum mechanism (2) Fast and produces good segmentation quality
[28]	DFA	Kapur and Otsu	The proposed method can outperforms all other algorithms
[121]	AWDO	Kapur and Otsu	Results indicated the superiority of the proposed method compared to other algorithms in all evaluation metrics used
[122]	MVO	Kapur and Otsu	Better and produces a good segmentation quality
[124]	EHO	Kapur and Otsu	 Produced a competitive results in all evaluation metrics used (2) Has better convergence than the other methods

Research paper : An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation

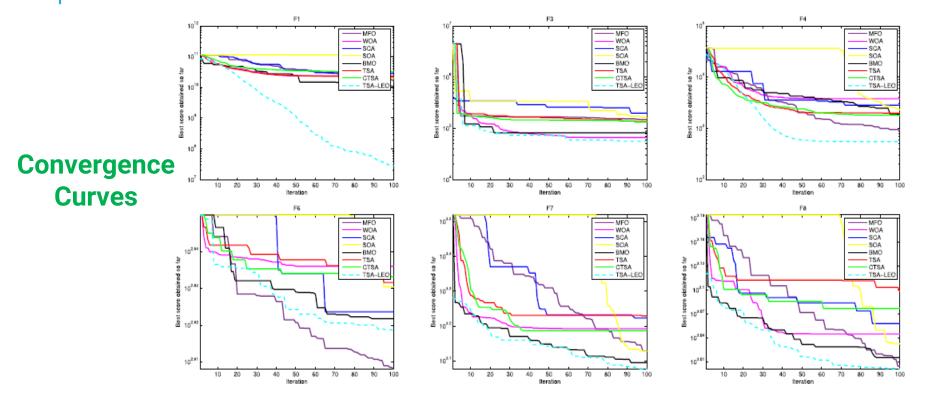
Journal:

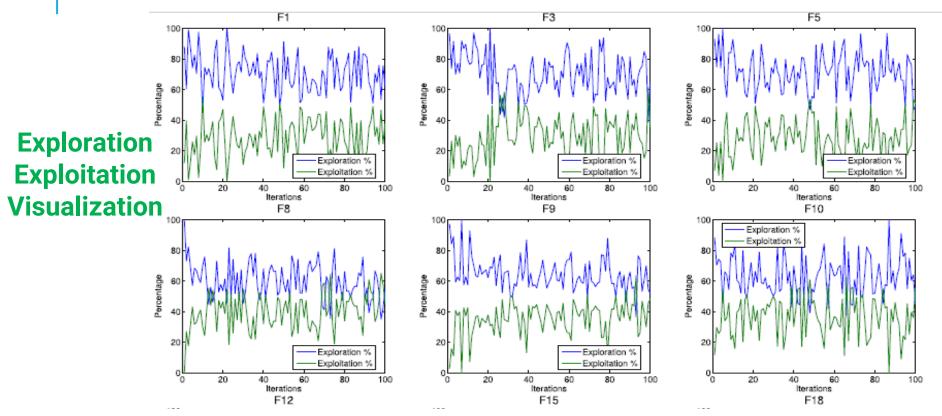

IEEE


Impact Factor: 3.367

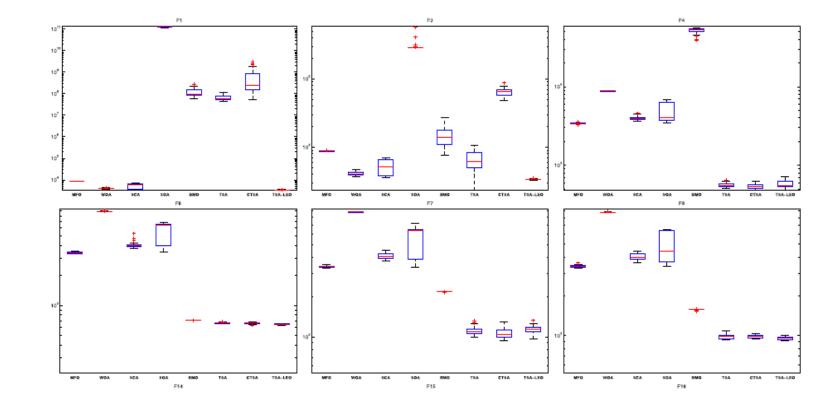
AN IMPROVED TUNICATE SWARM ALGORITHM FOR GLOBAL OPTIMIZATION AND IMAGE SEGMENTATION

This study [11] integrates a tunicate swarm algorithm (TSA) with a local escaping operator (LEO) for overcoming the weaknesses of the original TSA.




TABLE 2. Mean and STD of the fitness values of different optimization algorithms, obtained from 30 runs of 50-dimensional CEC'17 functions.

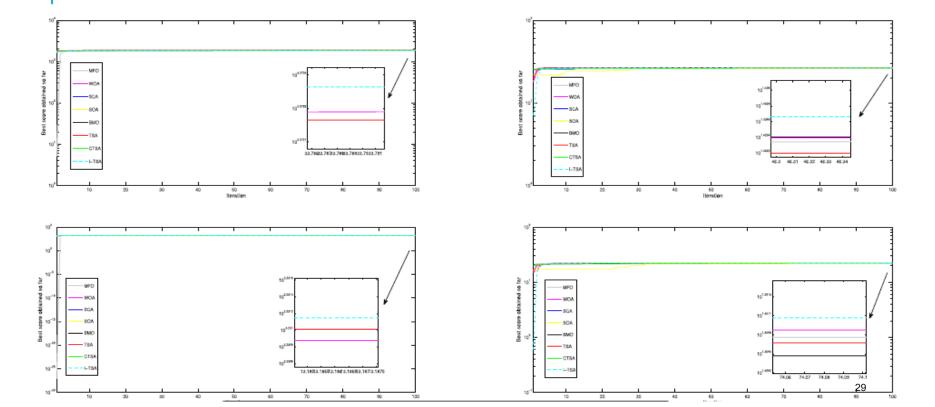
	М	FO	W	OA	sc	'A	SO	A	BN	40	T	SA	СТ	SA	TSA-I	.70
CEC-Function	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD	MEAN	STD
F1	1.26E+11	2.83E+08	9.15E+09	2.85E+09	6.00E+10	6.93E+09	4.09E+10	8.15E+09	1.31E+11	5.55E+09	4.60E+10	9.73E+09	6.77E+07	1.98E+07	7.05E+08	86E+08
F3	2.20E+05	2.89E+04	2.51E+05	7.75E+04	1.74E+05	2.58E+04	1.39E+05	1.79E+04	3.00E+05	5.60E+04	1.17E+05	1.65E+04	6.65E+03	2.10E+03	6.44E+04	8.79E+03
F4	5.74E+04	8.30E+02	2.66E+03	5.61E+02	1.09E+04	2.34E+03		1.78E+03	5.18E+04	4.57E+03	8.98E+03	3.35E+03	5.39E+02	4.08E+01	5.80E+02	1.25E+01
F5	1.39E+03	8.10E+01	1.06E+03	8.11E+01	1.11E+03	3.59E+01	9.475+00	37513401	-1.31E+03	1.88E+01	1.19E+03	9.31E+01	7.38E+02	3.81E+01	7.07E+02	3.71E+01
F6	7.13E+02	5.04E+00	6.92E+02	1.26E+01	6.79E+02	-5.90E+03	5.58E+04	4.93	E+0502	4.50E-02	7.00E+02	1.09E+01	6.64E+02	1.08E+01	6.47E+02	9.87E+00
F7	2.04E+03	4.18E+01	1.84E+03	9.55E+01	1.82E+03		5.89E+04		E+03	5.89E+00	1.81E+03	1.39E+02	1.06E+03	8.92E+01	1.14E+03	\$.41E+01
F8	1.69E+03	1.13E+02	1.36E+03	9.40E+01	1.43ESE+	-04 0				0.+E+01	1.47E+03	7.65E+01	9.88E+02	2.72E+01	9.62E+02	2.48E+01
F9	5.58E+04	7.18E+03	3.25E+04	9.03E+03	32.86E+	-03 3	3.70E+02	2.71	E+03	3.5113	4.91E+04	1.28E+04	6.65E+03	1.11E+03	5.11E+03	:.76E+02
F10	1.19E+04	6.96E+02	1.23E+04	1.12E+03	2.41E+	-03 2	2.28E+02	2.34	E+03	1.91E+	1.35E+04	1.04E+03	6.08E+03	6.23E+02	5.22E+03	4.27E+02
F11	1.91E+04	1.46E+03	5.43E+03	1.32E+03							$1.28E \pm 0.4$	4.46E+03	1.38E+03	5.86E+01	1.56E+03	3.90E+02
F12	1.03E+11	2.47E+09	1.80E+09	7.66E+08	1.06E-	- 2 S. 1 S	3.29E+05	1000000000	E+06	1.22E+		1.14E+10	4.91E+07	3.75E+07	5.16E+06	4.60E+06
F13	1.10E+11	5.83E+09	1.72E+08	1.02E9	2.11E+	-06 1	1.85E+06	5.82	E+03	2.57E+		9.51E+09	2.19E+06	3.81E+06	3.31E+04	2.69E+04
F14	1.04E+09	2.56E+08	5.60E+06	4.84E+5	2.70E+	03 2	2.29E+02	2.67	E+03	241E+	02 07	2.80E+07	6.27E+04	5.58E+04	4.93E+05	4.43E+05
F15	2.29E+10	9.82E+07	2.02E+07	2.10E+						2.4161	15E+09	100	9.78E+04	6.89E+04	5.05E+03	.32E+03
F16	2.01E+04	8.30E+02	6.09E+03	8.97E40	2.53E+	-03 4	4.31E+01	2.47	E+03	3.66E+		1.13E+03	2.002 03	3.70E+02	2.71E+03	:.51E+02
F17	1.34E+05	3.72E+04	4.53E+03	4.86E+02	4.81E+	-03 2	2.67E+03	2.76	E+03	1.30E+	-0.67E+03	4.07E+03	2.41E+03	2.201	2.34E+03	.91E+02
F18	7.46E+08	1.24E+08	3.41E+07	3.47E+07	3.07E+	.03 1	1.09E+02	2.81	E+03	4.71E+	3.77E+07	4.00E+07	1.06E+06	8.29E+05	1.20E+06	.22E+06
F19	1.19E+10	5.07E+08	1.06E+07	1.40E+07	4.0						1.72E+09	1.56E+09	2.11E+06	1.85E+06	5.82E+03	2.57E+03
F20	4.06E+03	2.64E+02	3.84E+03	3.72E+02	4220E+		1.14E+02	2.96	E+03	3.50府	3.85E+03	3.29E+02	2.70E+03	2.29E+02	2.67E+03	2.41E+02
F21	3.72E+03	6.87E+01	3.04E+03	1.06E+02	2.95E4E+	-03 2	2.47E+01	2.97	E+03	314E+02	3.04E+03	9.21E+01	2.53E+03	4.31E+01	2.47E+03	1.66E+01
F22	1.34E+04	5.24E+02	1.43E+04	1.05E+03	1.67E+04			2	and a second like	4.27E+02	1.49E+04	8.23E+02	4.81E+03	2.67E+03	2.76E+03	1.30E+03
F23	5.51E+03	1.10E+02	3.83E+03	1.84E+02	3.68E+03	L'ATPAOL	1.33E+03		E+03	1.95E+02	4.04E+03	2.05E+02	3.07E+03	1.09E+02	2.81E+03	4.71E+01
F24	6.09E+03	4.55E+02	3.85E+03	1.53E+02	3.84E+03	7.24E+01		5.50B+01	4.65E+03	1.43E+02	4.10E+03	1.67E+02	3.20E+03	1.14E+02	2.96E+03	3.50E+01
F25	1.60E+04	6.41E+01	4.12E+03	2.95E+02	8.20E+03	1.15E+03	5.83E+03	6.88E+02	1.89E+04	9.88E+02	7.13E+03	1.61E+03	2.94E+03	2.47E+01	2.97E+03	1.17E+01
F26	1.87E+04	7.26E+02	1.45E+04	1.58E+03	1.35E+04	7.67E+02	8.84E+03	6.18E+02	1.93E+04	5.21E+02	1.42E+04	1.13E+03	7.24E+03	1.33E+03	5.36E+03	1.71E+03
F27	7.93E+03	2.32E+02	4.65E+03	5.76E+02	4.82E+03	2.22E+02		1.84E+02	6.94E+03	5.70E+02	4.95E+03	5.05E+02	3.39E+03	1.08E+02	3.24E+03	.95E+01
F28	1.76E+04	5.41E+02	5.27E+03	3.97E+02	8.25E+03	8.76E+02		1.67E+03	1.77E+04	1.61E+03	6.57E+03	9.68E+02	3.31E+03	2.84E+01	3.37E+03	4.31E+01
F29	4.19E+05	1.68E+05	8.65E+03	1.44E+03	8.24E+03	7.90E+02		1.39E+03	1.21E+06	1.23E+06	9.23E+03	4.48E+03	4.80E+03	3.71E+02	4.04E+03	2.81E+02
F30	1.98E+10	4.29E+08	2.57E+08	1.09E+08	1.13E+09	3.83E+08		1.68E+08	1.76E+10	3.45E+09	1.33E+09	1.47E+09	1.09E+07	8.18E+06	1.102+04	5.86E+04
Fridman mean rank	7.0		3	.9	4.	9	3.3	34	7.	24	5.	31	2.	93	1.3	4
Rank	7		4	4	5	;	3			8	(6		2	23 1	


EXPERIMENTAL SERIES 1: CEC 2017

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS (CONTINUED)

Boxplot


TABLE 7. Average and STD of Kapur's fitness obtained from all algorithms.

		M	FO	wo	DA	SC	SCA		DA	BM	40	T	SA	СТ	SA	TSA-	LEO
Test Image	Level	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD
	2	1.76E+01	3.17E-01	1.76E+01	2.23E-04	1.76E+01	5.60E-03	1.76E+01	4.59E-04	1.75E+01	3.17E-01	1.75E+01	4.43E-02	1.75E+01	3.13E-01	1.76E+01	7.21E-15
Test 1	3	2.20E+01	2.52E-02	2.20E+01	4.60E-02	2.20E+01	3.07E-02	2.20E+01	5.78E-03	2.20E+01	2.52E-02	2.19E+01	4.97E-02	2.20E+01	3.05E-02	2.20E+01	.67E-13
ALOU A	4	2.65E+01	6.21E-03	2.66E+01	1.01E-02	2.64E+01	1.08E-01	2.65E+01	4.43E-02	2.66E+01	6.21E-03	2.63E+01	4.00E-04	2.66E+01	5.06E-03	2.66E+01	.20E-03
	5	3.05E+01	5.01E-02	3.05E+01	3.66E-02	3.01E+01	5.40E-01	3.05E+01	4.97E-02	3.05E+01	5.01E-02	3.02E+01	5.09E-02	3.05E+01	2.96E-02	3.05E+01	.01E-02
	2	1.78E+01	1.38E-04	1.78E+01	0.00E+00	1.78E+01	2.85E-03 4,30E-03	$0E^{78}DA^{01}$	3725-04	1.78E+01 2.22E+01	1.38E-04	1.77E+01	3.10E-03	1.78E+01	8.76E-02	1.78E+01	.00E+00
Test 2	3	2.23E+01	9.64E-02	2.21E+01	4.57E-02						9.64E-02	2.22E+01	1.31E-02	2.21E+01	5.08E-02	2.21E+01	.94E-02
	4	2.66E+01	1.65E-01	2.64E+01	1.65E-01	2.63E+01	1.22	2E-01	2.62E	+01 ^{E+01}	2.30E-01	2.64E+01	2.90E-03	2.65E+01	8.69E-02	2.64E+01	.65E-01
	5	3.04E+01	1.79E-01	3.03E+01	2.01E-01	2.97E+01				0.1	6.78E-02	3.02E+01	1.91E-02	3.03E+01	1.84E-01	3.03E+01	.79E-01
	2	1.76E+01	0.00E+00	1.76E+01	0.00E+00	1.705+01	2.64	4E-02	3.03E	+01 2	2.8,34E-04	1.76E+01	4.80E-02	1.76E+01	0.00E+00	1.76E+01	.00E+00
Test 3	3	2.21E+01	2.06E-01	2.21E+01	7.56E-03	29E+01	3.60	0E-15	1.79E	.01	2 61E-03	2.20E+01	1.05E-01	2.21E+01	2.30E-04	2.21E+01	.06E-04
	4	2.65E+01	9.15E-04	2.65E+01	7.22E-03			JE-15	1./912	3. (3) (3) (3) (3)	3.60E-03	2.62E+01	1.70E-03	2.63E+01	1.22E-01	2.62E+01	.35E-02
	5	3.05E+01	3.24E-03	3.06E+01	4.11E-02	26E+01	3.50	6E-04	2.26E	+01	3.36E ⁰¹	3.02E+01	3.21E-02	3.06E+01	2.64E-02	3.03E+01	.79E-01
	2	1.79E+01	1.32E-02	1.79E+01	5.28E-06-	202101	0.0	200400 100 10			01	1.78E+01	1.75E-01	1.79E+01	3.60E-15	1.79E+01	.60E-15
Test 4	3	2.26E+01	6.12E-02	2.26E+01	1.31E-0 ² .	68E+01	1.1	7E-03	2.68E	+01 4	4.98E-0	2.25E+01	2.46E-01	2.26E+01	3.56E-04	2.26E+01	.36E-05
	4	2.68E+01	1.83E-04	2.68E+01	4.72E-0	000.01	7.0	DE 02	2 000	.01 /	1075 0	2.66E+01	1.50E-03	2.68E+01	1.17E-03	2.68E+01	.98E-04
	5	3.07E+01	1.08E-03	3.08E+01		08E+01	1.2.	3E-02	3.08E		7.97E-0		1.65E-01	3.08E+01	7.23E-02	3.08E+01	.97E-02
	2	1.76E+01	1.61E-01	1.76E+01	1.08E	76E+01	1.09	8E-14	1.76E	+01	1.08E-14	1.76E+01	1.79E-01	1.76E+01	1.08E-14	1.76E+01	.08E-14
Test 5	3	2.24E+01	1.80E-14	2.24E+01	4.7.11								0.00E+00	2.24E+01	4.98E-04	2.24E+01	.80E-14
	4	2.68E+01	1.87E-01	2.68E+01	1.43E 2.	24E+01	4.98	8E-04	2.24E	+01	1.80E-1	12.66E+01	2.06E-01	2.67E+01	2.34E-01	2.65E+01	.87E-01
	5	3.07E+01	3.54E-01	3.08E+01	1.75H			Second Second					9.00E-04	3.08E+01	1.42E-01	3.06E+01	.54E-01
	2	1.82E+01	0.00E+00	1.82E+01	0.00E 2.	67E+01	2.34	4E-01	2.65E	+01	1.87E-0		312 0 03	1.82E+01	0.00E+00	1.82E+01	00E+00
Test 6	3	2.26E+01	9.78E-04	2.26E+01	2.86E 2	08E+01	1.4	2E-01	3.06E	01 3	2 54E 0	12.25E+01	1.32E-02	a-100-01	1.30E-03	2.26E+01	.78E-04
	4	2.70E+01	1.50E-01	2.70E+01		0000+01	1.44	2E-01	3.00E	+01 .	3.54E-0		6.12E-02	2.70E+01	03	2.70E+01	.50E-01
	5	3.09E+01	1.20E-02	3.10E+01	4.68E 1.	82E+01	0.00	0E+00	1.82E	+01 0	0.00E+0	3.07E+01	2.00E-04	3.11E+01	1.80E-02	3.11E+01	.20E-02
	2	1.79E+01	2.38E-04	1.79E+01	2.29E-0							1.78E+01	1.10E-03	1.79E+01	8.11E-05	1.79E+01	.38E-04
Test 7	3	2.24E+01	1.08E-14	2.24E+01	3.81E-0.2.	26E+01	1.30	0E-03	2.26E	+01 9	9.78E-0	2.23E+01	1.08E-01	2.24E+01	1.94E-03	2.24E+01	.08E-14
	4	2.66E+01	8.24E-03	2.66E+01	7.21E-03	701.01	5.04	CE 02	2 70E	01	1 50P	2.65E+01	8.60E-03	2.66E+01	7.81E-03	2.66E+01	.24E-03
	5	3.04E+01	1.35E-02	3.05E+01		70E+01	5.90	6E-03	2.70E	+01	1.50E02	3.03E+01	6.80E-03	3.05E+01	8.40E-03	3.05E+01	.35E-02
	2	1.78E+01	7.21E-15	1.77E+01	7.03E-03	11E+01	1.80	0E-02	3.11E	+01	1.202E-01	1.77E+01	5.48E-02	1.77E+01	5.71E-02	1.77E+01	.21E-15
Test 8	3	2.24E+01	1.08E-14	2.22E+01	1.81E-01	Also a distanti - 1		100-007 C 10000000				2.21E+01	3.00E-04	2.24E+01	5.92E-03	2.24E+01	.08E-14
	4	2.63E+01	2.74E-01	2.63E+01	1.61E-01	2.60E+01	8.1	1E-05	1.79E	+01	3.39E-01	2.60E+01	2.20E-03	2.64E+01	1.41E-02	2.64E+01	.08E-03
	5	2.99E+01	6.41E-04	2.99E+01	1.80E-01	2.89E+01	10	10.02	2 240	.01	1.49E-01	2.97E+01	8.29E-02	2.99E+01	2.66E-01	3.01E+01	.90E-02
	2	1.57E+01	1.00E-02	1.57E+01	7.23E-05	1.57E+01		4E-03	2.24E	+01E+01	3.70E-03	1.57E+01	3.30E-01	1.57E+01	2.64E-05	1.57E+01	.54E-05
Test 9	3	1.95E+01	2.15E-02	1.95E+01	6.45E-03	1.95E+01	2.16E-02	EzQ301	2.665	1.95E+01	8.38E-03	1.94E+01	7.00E-04	1.95E+01	5.37E-03	1.95E+01	.90E-03
	4	2.28E+01	5.04E-02	2.29E+01	1.14E-02	2.28E+01	4.00E-02			2.28E+01	1.95E-02	2.27E+01	1.00E-03	2.29E+01	9.48E-03	2.29E+01	.37E-03
	5	2.58E+01	2.83E-04	2.59E+01	1.39E-02	2.55E+01	6.88E-01	2.59E+01	5.04E-02	2.59E+01	2.87E-02	2.57E+01	5.60E-03	2.59E+01	1.55E-02	2.59E+01	.45E-02
	2	1.77E+01	8.28E-02	1.77E+01	3.63E-03	1.76E+01	2.27E-02	1.72E+01	2.83E-04	2.63E+01	1.61E-01	1.77E+01	3.07E-02	1.72E+01	3.60E-15	1.75E+01	.49E-01
Test 10	3	2.24E+01	1.08E-01	2.23E+01	2.07E-02	2.22E+01	1.87E-01	2.16E+01	8.28E-02	2.99E+01	1.80E-01	2.22E+01	1.08E-01	2.15E+01	1.74E-01	2.23E+01	.36E-01
	4	2.65E+01	3.10E-04	2.65E+01	1.47E-01	2.61E+01	2.40E-01	2.55E+01	1.08E-01	1.57E+01	7.23E-05	2.62E+01	5.40E-01	2.56E+01	1.09E-01	2.65E+01	.10E-04
	5	3.05E+01	1.39E-01	3.03E+01	9.29E-02	2.95E+01	5.48E-01	2.95E+01	1.93E-01	1.95E+01	6.45E-03	3.00E+01	2.90E-03	2.96E+01	3.38E-01	3.057.01	1.39E-01
Fridman me			.4	5.5		1.9	-		3.91 4.43				35	5.09		6.26	
rank	rank 5 2 8		5	2		8		7	4				6	3		27	

TABLE 15. Average and STD of Otsu's fitness obtained from all algorithms.

		M	FO	W	OA	SC	CA	SC)A	BN	40	T	SA	СТ	SA	TSA-	LEO
Test Image	Level	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD	Mean	STD
Test 1	2	3.64E+03	1.92E+02	3.65E+03	2.67E+00	3.65E+03	5.49E+00	3.65E+03	6.47E+00	3.65E+03	1.50E+00	3.64E+03	6.47E+00	3.65E+03	1.57E+00	3.65E+03	1.81E+00
	3	3.72E+03	1.84E+02	3.73E+03	2.12E+00	3.72E+03	8.41E+00	3.71E+03	8.55E+00	3.73E+03	1.63E+00	3.72E+03	8.55E+00	3.72E+03	2.69E+00	0.100.00	2.24E+00
	4	3.77E+03	1.50E+02	3.78E+03	3.07E+00	3.76E+03	9.25E+00	3.75E+03	1.33E+01	3.78E+03	3.32E+00	3.77E+03	1.33E+01	3.78E+03	2.65E+00	3.78E+03	3.04E+00
	5	3.81E+03	1.28E+02	3.81E+03	3.44E+00	3.78E+03	7.70E+00	3.78E+03	1.06E+01	3.81E+03	3.53E+00	3.80E+03	1.06E+01	3.81E+03	3.05E+00	3.81E+03	3.07E+00
Test 2	2	1.96E+03	1.04E+02	1.96E+03	1.69E+00	1.96E+03	5.78E+00	1.96E+03	6.26E+00	1.96E+03	1.64E+00	1.96E+03	6.26E+00	1.96E+03	2.05E+00	1.96E+03	1.61E+00
	3	2.12E+03	1.11E+02	2.13E+03	4.30E+00	2.11E+03	1.56E+0/U		DESTE+01	2.13E+03	4.47E+00	2.12E+03	2.31E+01	2.13E+03	5.07E+00	2.13E+03	3.82E+00
	4	2.19E+03	1.01E+02	2.19E+03	4.76E+00	2.15E+03	73E+00) 3.21	LE+03	2.19E+03	6.81E+00	2.18E+03	1.85E+01	2.19E+03	4.37E+00	2.19E+03	4.59E+00
	5	2.21E+03	8.99E+01	2.22E+03	4.02E+00	2.18E+03			7E+03	22E+03	4.35E+00	2.21E+03	1.52E+01	2.22E+03	3.65E+00	2.22E+03	3.77E+00
Test 3	2	1.55E+03	8.27E+01	1.55E+03	3.04E+00		75E+00	5.2	E+05	3.403	1.71E+00	1.55E+03	9.62E+00	1.55E+03	2.81E+00	1.55E+03	2.33E+00
	3	1.64E+03	8.52E+01	1.64E+03	3.69E+00	3 3.	37E+00	3.31	LE+03	3.341	2.95E+00	1.64E+03	1.73E+01	1.64E+03	3.40E+00	1.64E+03	3.32E+00
	4	1.69E+03	8.30E+01	1.70E+03	4.42E+00						4.902400	1.69E+03	1.50E+01	1.69E+03	4.11E+00	1.70E+03	4.17E+00
	5	1.72E+03	7.76E+01	1.72E+03	3.93E+00-(13 1.	24E+00	1.93	5E+03		E+83E+00	1.71E+03	1.35E+01	1.72E+03	3.44E+00	1.72E+03	4.11E+00
Test 4	2	3.05E+03	1.62E+02	3.06E+03	2.30E+0 4.32E ⁺ +(3 1	54E+00	1 2.03	3E+03	1 691	E+04+00	3.05E+03	9.95E+00	3.06E+03	2.34E+00	3.06E+03	2.54E+00
	3	3.20E+03	1.58E+02	3.21E+03								3.20E+03	1.18E+01	3.21E+03	3.73E+00	3.21E+03	4.95E+00
	4	3.26E+03	1.42E+02	3.27E+03	3.74E+0)3 2.	76E+00) 2.07	7E+03	2.621	E+0000	3.25E+03	3.93E+00	3.27E+03	2.75E+00	3.27E+03	3.48E+00
	5	3.30E+03	1.21E+02	3.31E+03	4.12 1.09E+0	13 20	93E+00	210	DE+03	3 031	E+000	3.29E+03	6.75E+00	3.31E+03	3.37E+00	3.31E+03	3.34E+00
Test 5	2	1.94E+03	1.04E+02	1.95E+03								1.94E+03	7.99E+00	1.95E+03	1.24E+00	1.95E+03	1.17E+00
	3	2.02E+03	1.02E+02	2.03E+03	44E+0)3 2.3	89E+00) 2.44	4E+03	2.491	E+00 🗼	2.02E+03	8.04E+00	2.03E+03	1.54E+00	2.03E+03	1.69E+00
	4	2.07E+03	9.37E+01	2.07E+03			275.00	2 50	E . 02			2.09E+03	7.59E+00	2.07E+03	2.76E+00	2.07E+03 2.10E+03	2.62E+00 3.03E+00
Trate	2	2.09E+03	8.03E+01	2.10E+03	259E+0	3 3.	37E+00	2.55	9E+03	3.971	2+00 j		1.14E+01	2.09E+03	2.93E+00		3.03E+00 2.49E+00
Test 6	3	2.43E+03 2.58E+03	1.26E+02 1.24E+02	2.44E+03 2.59E+03	56E+0	3 4.3	26E+00	2.60	SE+03	3.821	E+00	2.43E+03 2.58E+03	1.14E+01 1.03E+01	2.59E+0.5	2.89E+00	2.44E+03 2.59E+03	2.49E+00 3.97E+00
	4	2.65E+03	1.08E+02	2.59E+03								2.58E+03 2.64E+03	5.02E+01	2.66E+03	4.26E+00	2.59E+03	3.82E+00
	5	2.69E+03	8.92E+02	2.60E+03	459E+0	3 4.	50E+00	2.70)E+03	4.751	E+00]	2.64E+03 2.68E+03	1.02E+00	2.69E+03	4.20E+00	2.00E+03	4.75E+00
Test 7	2	1.62E+03	8.38E+01	1.63E+03	2.53E+0	13 31	03E+00	163	3E+03	2 031	E+0000	1.62E+03	9.37E+01	1.63E+03	3.03E+00	1.63E+03	4.73E+00 2.03E+00
Acst /	3	1.76E+03	8.35E+01	1.76E+03		Contract Contract Contract						1.75E+03	8.03E+01	1.76E+03	3.28E+00	1.76E+03	3.46E+00
	4	1.82E+03	7.35E+01	1.83E+03	3.441 4.50E+C)3 3.	28E+00) 1.70	5E+03	3.46	E+0000	1.82E+03	1.26E+02	1.83E+03	3.73E+00	1.83E+03	3.57E+00
	5	1.87E+03	6.67E+01	1.87E+03	4.23E+++(73E+00	18	3E+03		E+00+00	1.86E+03	1.24E+02	1.87E+03	4.69E+00	1.87E+03	4.06E+00
Test 8	2	1.54E+03	8.24E+01	1.54E+03	2.92E+00						0.477.000	1.54E+03	1.08E+02	1.54E+03	2.93E+00	1.54E+03	2.07E+00
10010	3	1.64E+03	8.21E+01	1.64E+03	3.27E+00	03 4.0	69E+00	1.87	7E+03	4.06	E2:61E+00	1.63E+03	8.92E+01	1.64E+03	3.73E+00	1.64E+03	3.04E+00
	4	1.70E+03	7.92E+01	1.70E+03	4.94E+00		93E+00	1.5	4E+03	2.07	4.46E+00	1.69E+03	8.38E+01	1.70E+03	3.91E+00	1.70E+03	3.84E+00
	5	1.73E+03	7.30E+01	1.73E+03	4.17E+00	1.69E				2.07	4.14E+00	1.72E+03	8.35E+01	1.73E+03	3.66E+00	1.73E+03	3.37E+00
Test 9	2	2.53E+03	1.24E+02	2.53E+03	2.56E+00	2.53E+3.	73E+00	1.64	4E+03	3E403	1.88E+00	2.53E+03	7.35E+01	2.53E+03	2.86E+00	2.53E+03	2.15E+00
	3	2.72E+03	1.15E+02	2.72E+03	3.47E+00	2.71E+03	a second second			2.72E+03	3.24E+00	2.71E+03	6.67E+01	2.72E+03	3.13E+00	2.72E+03	2.83E+00
	4	2.82E+03	9.88E+01	2.82E+03	4.54E+00	2.77E+03	15+00	1.70)E+03	2.82E+03	5.79E+00	2.81E+03	8.24E+01	2.82E+03	4.38E+00	2.82E+03	3.99E+00
	5	2.87E+03	8.35E+01	2.88E+03	4.18E+00	2.82E+03	1.52E+01	2.83E+03	1.46E+01	2.87E+03	6.75E+00	2.86E+03	8.21E+01	2.87E+03	4.55E+00	2.88E+03	4.26E+00
Test 10	2	1.55E+03	8.31E+01	1.56E+03	2.44E+00	1.55E+03	5.63E+00	1.55E+03	7.55E+00	1.56E+03	2.19E+00	1.55E+03	7.92E+01	1.56E+03	2.71E+00	1.56E+03	2.12E+00
	3	1.67E+03	8.77E+01	1.67E+03	4.51E+00	1.63E+03	1.11E+01	1.64E+03	1.89E+01	1.67E+03	3.91E+00	1.66E+03	7.30E+01	1.67E+03	5.35E+00	1.67E+03	4.33E+00
	4	1.71E+03	8.78E+01	1.71E+03	3.87E+00	1.67E+03	1.24E+01	1.68E+03	1.58E+01	1.71E+03	4.69E+00	1.70E+03	1.24E+02	1.71E+03	4.22E+00	1.71E+03	3.63E+00
	5	1.73E+03	7.75E+01	1.74E+03	3.88E+00	1.69E+03	1.10E+01	1.70E+03	1.39E+01	1.74E+03	4.36E+00	1.73E+03	2.56E+00	1.73E+03	3.87E+00	1.74E+03	4.02E+00
Friedman m	ean rank	2	.6	5	4	1	2	1.	43	4	.7	4.88		5.4			
Ran	k		5		2	(6	1	7		4		3		2	28 1	

EXPERIMENTAL RESULTS (CONTINUED)

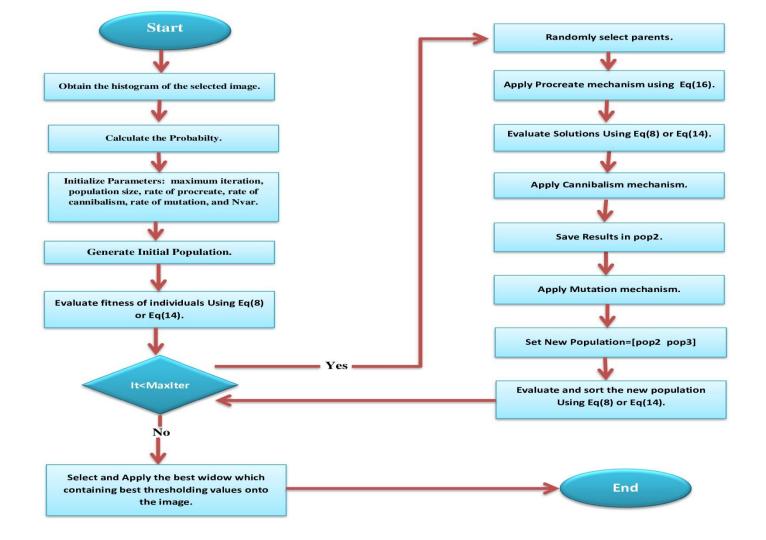
Research paper : **A novel Black Widow Optimization** algorithm for multilevel thresholding image segmentation

Journal:

Expert Systems with Applications

Impact Factor:

6.954


101001-011

Expert

Journal Editor-in-Chief Binshan Lin

A NOVEL BLACK WIDOW OPTIMIZATION ALGORITHM FOR MULTILEVEL THRESHOLDING IMAGE SEGMENTATION

This paper [10] introduces the use of the novel metaheuristic algorithm called Black Widow Optimization (BWO) to find the best threshold configuration using Otsu or Kapur as objective function.

Experimental Results

Table 8

Otsu's average and Std of fitness results over all test images.

Test image	nTh	GWO		MFO		WOA		SCA		SSA		EO		BWO	
		Mean	Std												
Test 1	2	3651.5291	9.23E-13	3641.2656	9.23E-13	3651.6431	9.23E-13	3650.9396	8.92E-02	3641.0548	9.23E-13	3651.6449	9.23E-13	3651.8279	1.46E-02
	3	3726.6424	3.80E-03	3717.8815	1.66E - 02	3727.1213	5.70E-03	3723.9815	5.60E-01	3715.2663	4.61E-13	3727.1206	0.00E+00	3727.354	4.16E-02
	4	3780.2402	2.81E-02	3774.5151	4.04E-02	3781.8612	3495.3.	3766.1196	1.89E+01	3767.7446	2.31E - 12	3781.921	9.30E-03	3782.2742	2.05E-01
	5	3810.0349	7.14E-02	3807.1705	4.61E-02	3813.0378			1.44E+01	3798.4222	1.35E+00	3813.1098	1.23E-02	3813.3353	4.31E-01
Test 2	2	1964.0169	6.92E-13	1958.5612	6.92E-13	1364.200	1964.3	534	8-25E-02	1958.3101	6.92E-13	1964.2138	6.92E-13	1964.3534	6.92E-13
	3	2129.7363	9.23E-13	2124.9639	2.50E-02	7	1 20 110		20E-01	2122.5507	9.23E-13	2130.8198	4.61E-13	2131.2626	1.37E-01
	4	2191.2426	1.99E-02	2188.782	4.14E-02 6.82E	13	2131.2	626	1.37L	2183.5508	4.61E-13	2194.1726	1.38E-02	2194.6737	2.17E-01
	5	2214.5201	6.06E+00	2215.1406	6.82E	15	2101.2	020	1.0/1	2208.6585	5.78E-01	2219.1797	7.69E-01	2219.9284	1.44E+00
Test 3	2	1552.0531	0.00E+00	1547.6058	-38E-	02	2194.67	7 3 7	2.17E-	1547.3579	0.00E+00	1552,1875	0.00E+00	1552.3713	0.00E+00
	3	1642.1899	4.00E-03	1638.2712	500L-	02	2194.0/	3/			6.92E-13	1643.0122	2.90E-03	1643.3729	3.84E-02
	4	1694.0637	1.60E - 02	1692.1731	7.69E-	01	2219.9	100	1.44E+	087.1416	2.89E-04	1696.6029	9.10E-03	1696.9765	1.30E+00
	5	1719.2853	5.40E-02	1718.2818	1.09E-	01	2219.9.	204	1.4464	-002.8199	2.30E-03	1722.3431	6.00E-02	1722.6581	1.05E+00
Test 4	2	3063.2846	1.38E-12	3054.5744	0.000	00	1	719	O OOF	00.7215	1.38E - 12	3063.2569	9.23E-13	3063.4738	1.20E-02
	3	3211.5595	1.30E-03		0.00E+	00	1552.37	13	0.00E+	-00.3669	2.31E-12	3211.9984	1.38E-12	3212.3472	5.13E+00
	4	3267.1362	4.19E-02	3260.6021	2 005	02	1649 9	700	2 04E	00 6965	9.10E-03	3268.1265	7.42E-02	3268.5305	1.22E+00
	5	3304.2484	8.39E-02		2.90E-	03	1643.3	29	3.84E-	-UZ 37.	09E-04	3306.5062	3.51E-02	3305.4979	5.00E+00
Test 5	2	1949.0556	9.23E-13	1943.6572	0 100	00	1		1 000	593	9.23E	1949.2143	4.61E-13	1949.2708	9.23E-13
	3	2024.6166	8.00E-04	2019.9808	9.10E-	03	1696.9	65	1.30E+	-00 7008	0.00E+00	2025	8.49E-04	2025.3891	6.85E-02
	4	2068.0244	1.25E-02	2065.9067	C 000	00	1 - 00 - 01	1	1 055	2268	4.61E-13	2070.3795	1. 03	2070.123	1.51E+00
	5	2092.0883	4.40E+00	2092.0993	6.00E-	02	1722.6	581	1.05E+	-00 0425	3.70E-03	2096.2179	1.69E-02	2096.7018	6.73E-01
Test 6	2	2437.1712	0.00E+00	2430.2799						9.9631	0.00E+00	2437.1483	0.00E+00	2437.4502	2.85E-02
	3	2586.6871	0.00E+00	2581.2704	9.23E-	13	3063.47	738	1.20E-	$-02^{.2484}$	0.00E+00	2587.7547	0.00E+00	2588,2206	1.79E-02
	4	2654.0466	1.00E-02	2651.3019							9.98E-04	2656.7806	1.38E-12	2657.1216	2.38E-02
	5	2691.6897	7.76E-02	2690.9917	138E-	12	3212.34	472	5.13E+	-6083.1994	8.30E-03	2695.9875	3.29E-02	2696.6009	1.38E-01
Test 7	2	1627.4861	1.61E-12	1623.229	0.000						1.61E-12	1627.6578	1.61E-12	1627.8348	5.26E-02
	3	1758.4824	9.23E-13	1755.44	3.795 F	02	3268.5	305	1.22F	1752.753	9.23E-13	1759.6163	1.38E-12	1759.9545	3.08E-01
	4	1826.1669	1.58E-02	1824.1739	0.004		0200.00	000		1819.693	1.15E-12	1828.2669	9.23E-13	1828.724	1.74E-01
Test 8	5 2	1867.6061 1542.4878	4.83E-02 6.92E-13	1867.2066 1538.2274	4.23E-01 6.92E-13	0242	3305.49	070	5.10E-02	1860.7429 1537.9354	4.50E-03 6.92E-13	1871.0836 1542.6432	2.87E-02 6.92E-13	1871.687 1542.8253	7.38E-02 6.92E-13
161 0	3	1639.2214	1.38E-12	1635.5259	1.38E-12	1639.8193	0000.12		9.60E+00	1633.4691	1.38E-12	1640.0969	6.92E-13 6.92E-13	1640.3765	8.30E-02
	3	1699.353	4.34E+00	1635.5259	2.02E-02	1701.4558	1949.2	709-2/85	1.66E+01	1693.9613	1.38E-12 1.27E-02	1702.2118	0.92E-13 1.15E-12	1702.6045	1.47E-01
	5	1726.145	4.34E+00 3.77E+00	1726.0562	1.96E-01	1701.4558	3.78E+00	1698.8111	1.14E+01	1720.8016	2.50E-03	1730.1965	9,40E-03	1730,2223	2.69E-01
Test 0	2	2533.9484	0.00E+00	2527.7569	0.00E+00	2534,1884	3.78E+00 0.00E+00	2533.2056	5.04E-02	2526,8088	2.50E-03 0.00E+00	2534.1856	9.40E-03 0.00E+00	2534.3977	0.00E+00
Test 9															
	3	2722.89	2.31E-12	2717.916	6.03E-02	2723.9587	1.19E-04	2714.2435	2.87E+01	2714.7584	2.31E-12	2723.9545	1.38E-12	2724.3334	4.13E-02
		2820.8812	3.50E-02	2818.7941	2.56E-01	2824.0628	6.71E-05	2796.1716	3.19E+01	2812.7994	1.38E-12	2824.0819	3.96E-06	2824.5256	2.45E-01
Test 10	5 2	2871.4085 1555.3056	3.82E-02 6.92E-13	2870.9604 1550.9775	6.45E-01 9.40E-03	2875.0732 1555.4839	4.14E-01 6.92E-13	2833.1681 1554.3051	1.94E+01 2.07E-01	2863.83 1550.856	4.54E-02 6.92E-13	2875.2818 1555.5229	3.97E-01 1.15E-12	2876.1772 1555.6158	2.73E-01 1.13E-02
rest to	3	1669.6943	6.92E-13 6.92E-13	1665.9754	9.40E-03 6.80E-03	1555.4839	2.60E-03	1657.1512	2.07E-01 2.70E+01	1663.7436	6.92E-13 6.92E-13	1667.5182	1.15E-12 1.96E+01	1671.2309	2.03E-02
	3	1710.2643	0.92E-13 1.17E-02	1708.1418	0.80E-03 1.86E-02	1709.5903	2.60E-03 9.86E+00	1677.3078	2.96E+01	1703.2095	6.92E-13 9.23E-13	1712.612	3.40E-03	1713.0053	9.51E-01
	4	1732.9805	4.36E+00	1708.1418	1.86E-02 1.09E+00	1709.5903		1704.2506	2.96E+01 1.72E+01	1703.2095	9.23E-13 1.21E-02	1737,9301	3.40E-03 3.48E-02	1713.0053	9.51E-01 6.26E-01
	5	1732.9805	4.305+00	1/33./416	1.09E+00	1/3/.2268	4.37E+00	1704.2506	1./26+01	1728.8009	1.21E-02	1737.9301	3.46E-02	1/36.02/8	0.201-01

Table 9

Otsu's average and Std PSNR results over all test images.

Test image	aTh	GWO		MPO		MON		SCA		SSA		EO		BWO	
		Mean	Sud	Mean	84	Mean	84	Mean	Std	Mean	Sad	Mean	Sid	Mean	84
Test 1	2	17.2474	1.08E-14	17.2474	1.08E-14	17.2474	1.08E-14	17.2420	0.0758	17.2474	1.08E-14	17.2474	1.08E-14	17.2494	0.0214
	3	20.2098	0.0084	20.2073	0.0145	202062	0.0127	201379	01998	20.2113	0	20.2113	0	201870	0.0415
	4	21.4937	0.0388	21.5111	0.0392	21.5258	415E-02	21.0456	0.6023	21,5328	7.21E-15	21.5291	0.0152	21.4850	01115
	5	23.2554	0.0384	232884	0.0205	23.2977	0.0302	21.8279	0.8876	23.2579	0.1526	23.2802	0.0215	23,2385	01138
Test 2	2	15.4016	7.21E-15	15,4016	7.21E-15	15,4016	7.21E-15	15.4100	0.0316	15.4016	7.21E-15	15.4016	7.21E-15	15,4085	0.0162
	3	17.4279	1.08E-14	17.4295	0.0165	17.4279	108E-14	197302-	0.6441	17.4279	1.08E-14	17.4279	1.08E-14	17.4333	0.0443
	4	18.7768	0.0039	18,7787	0.0058	187130	102360	15 4990	0.6263	18.7742	0	18.7752	0.0025	187771	0.0423
	5	19.4809	0.2828	19.6137	0.3215	19.4122	-14	15.4230	397	19.5116	0.2647	19.7961	0.3646	19.5624	0.3161
Test 3	2	15.4217	1.26E-14	15.4217	1.26E-14	1542026	5	17.7589	0	15.4217	1.26E-14	15.4217	1.26E-14	15.4230	0.0111
	3	17.7098	0.0036	17.7354	0.0634	17.70				17.7084	7.21E-15	17.7089	0.0026	17.7589	0.0829
	4	20.2625	0.0361	20.2371	0.0501	10.0320)	20.2669	0	09.2001	0.0148	20.2119	0.0320	20.2669	0.0977
	5	21.6806	0.0755	21.7547	0.1976	0.1013	2	21.6435	0	.1791	0.0050	21.6749	0.1013	21.6435	0.1791
Test 4	2	17.8870	0	17.8870	0	0.101.					0	17.8870	0	17.8887	0.0067
	3	20.3466	3.62E-03	20.3423	0.0091	0		17.8887	0	0.0067^{2}	1.08E-14	20.3472	108E-14	20.3376	0.0239
	4	22.1775	0.0128	22.1832	0.0217	1 000	14				0.0005	22.1808	0.0131	221731	0.0286
	5	23.6635	0.0264	23,6888	0.0174	1.08E-	-14	20.3376	0	.0239	0.0036	23.6898	0.0131	23.6755	0.0602
Test 5	2	15.0290	1.26E-14	15.0311	0.0124	0.0131		22.1731	0	.0286	1.26E-14	15.0290	1.26E-14	15.0397	0.0260
	3	18.7984	0.0258	188285	0.0617						142-14	18.8003	0.0274	18.8388	0.0879
	4	20.7619	0.0344	20,7804	0.0557	0.0131		23.6755	0	.0602	1.085-17	20,7375	0.0100	20.7831	01132
	5	23.0621	0.3612	231274	0.0381						0.0229	23.140	0.0305	23.0426	01614
Test 6	2	16.2997	1.08E-14	162997	108E-14	1.26E-	-14	15.0397	0	.0260	1.08E-14	16.2997	Luur	162992	0.0011
	3	18.3592	1.44E-14	183600	0.0046	0.0274	1	18.8388	0	.0879	1.44E-14	18.3592	144E-14	18.3707	0.0247
	4	20.7322	9.98E-03	20,7376	0.0092						0.0026	20.7376	1.08E-14	20,7271	0.0406
	5	22.2838	0.0209	22,2962	0.0170	0.0100		20.7831	0	0.1132	0.0015	22.3043	0.0111	22,2664	0.0466
Test 7	2	15.9994	5.41E-15	15,9994	5.41E-15	0.0305	-	23.0426	0	.16144	5.41E-15	15.9994	541E-15	16.0008	0.0036
	3	18.1974	7.21E-15	181958	0.0094						7.21E-15	18.1974	7.21E-15	181778	0.0340
	4	20.6831	1.91E-02	20.6764	0.0111	4.08E-	-14	16.2992	0	.00 5734	1.80E-14	20.6734	1.80E-14	20.6957	0.0520
	5	22.2271	0.0338	22,2183	0.0264	22.2-				22.2235	0.0077	22.2265	0.0052	221501	0.0791
Test 8	2	14.6091	0	14.6091	0	14.664E		18.3707	0	14 6091	0	14.6091	0	14.6071	0.0076
	3	19.1571	3.60E-15	191571	360E-15	19.1605	14	20.7271		19.1571	3.60E-15	19.1571	360E-15	19.1378	0.1676
	4	20.9690	7.60E-01	21.1459	0.0724	21.1086	-014000		1.9656	21.1679	0.0508	21.1803	7.21E-15	20.9465	0.2560
	5	22.2127	0.1795	22,3615	0.0251	22,2522	0.3860	22.2664	1.8785	22,4016	0.0228	22.3684	0.0347	221879	0.3799
Test 9	2	13.9533	0.0135	139525	0.0132	139533	0.0135	13.9682	0.0265	13.9573	0.0142	13.9581	0.0142	13,9576	0.0164
	3	16.5753	1.08E-14	166514	01695	165767	800E-03	163103	1.0297	16.5753	1.08E-14	16.5753	1.08E-14	16.7093	0.1824
	4	18.8653	0.0217	18,9209	0.1.283	188788	215E-02	181289	1.0999	18.8728	7.21E-15	18.8717	0.0064	18.9318	01134
	5	20.5578	0.0573	20.6217	0.1630	205755	0.0912	193333	0.8727	20.5658	0.0303	20.6398	0.1394	20.5454	0.1245
Test 10	2	13.6937	0	137002	0.0268	136937	0	13.7385	0.0775	13.6987	0	13.6937	0	137163	0.0459
	3	16.9578	0	16.9578	0.0002	169395	0.0406	163620	11890	16.9578	0	16.8803	0.4582	16.9389	0.0766
	4	19.1689	0.0638	191176	0.0297	19.0053	516E-01	17.8999	11509	19.1112	1.08E-14	19.1148	0.0211	19.1390	01192
	5	19.7524	0.0928	19.8253	0.1470	197221	0.0753	188669	0.9446	19.7332	0.0220	19.7680	0.0581	11/04/	01363

A NOVEL BLACK WIDOW OPTIMIZATION ALGORITHM FOR MULTILEVEL THRESHOLDING IMAGE SEGMENTATION

The experimental results have revealed that the proposed BWO-based method outperform the competitor algorithms in terms of the fitness values as well as the others performance measures such as PSNR, SSIM and FSIM.

OPEN CHALLENGES

1.Selection of NIOA for MLT.

It can be noticed that a massive set of NIOA has been introduced and exist in literature. Though, theoretically and practically, each NIOA's performance extensively depends on the problem under consideration i.e. the image type for MLT.

2.Selection of Objective Function.

Proper selection of objective function for a NIOA based MLT model for a specific set of images is also very demanding. Numerous objective functions are developed in the literature which makes the selection more crucial.

3.Selection of Quality Parameters

As such there is no single criterion for completing accurate segmentation for different variants of images. Furthermore, there is no one metric for evaluating the segmentation quality of an image segmentation technique across various image types.

CONCLUSION

- The problem of determining the optimal thresholding in case of multi-level thresholding for image segmentation is considered as optimization problem, so we tried to take the advantage of NIOAs to tackle such problem accuratelly.
- Multi-Level thresholding image segmentation problem formulated as an optimization problem.
- Black Widow Optimization Algorithm (BWO) employed to improve the quality of segmentation based thresholding techniques.
- A hybrid algorithm of Tunicate Swarm Algorithm (TSA) with Local Escaping Operator (TSA-LEO) introduced to cope with the original TSA's inherent weaknesses. 37

CONCLUSION (CONTINUED)

The TSA-LEO's performance is evaluated on:

- The CEC'17 test suite with 29 test functions.
- Image segmentation based on Multi-level thesholdig problem.

REFERENCES

[1] E. Rodr´ıguez-Esparza, L. A. Zanella-Calzada, D. Oliva, A. A. Heidari, D. Zaldivar, M. P´erez-519Cisneros, L. K. Foong, An efficient harris hawks-inspired image segmentation method, Expert520Systems with Applications (2020) 113428.

[2] S. Aja-Fern´andez, A. H. Curiale, G. Vegas-S´anchez-Ferrero, A local fuzzy thresholding methodol-522ogy for multiregion image segmentation, Knowledge-Based Systems 83 (2015) 1–12.

[3] H. Gao, Z. Fu, C.-M. Pun, H. Hu, R. Lan, A multi-level thresholding image segmentation based524on an improved artificial bee colony algorithm, Computers & Electrical Engineering 70 (2018)525931–938.

[4] N. Otsu, A threshold selection method from gray-level histograms, IEEE transactions on systems, 527man, and cybernetics 9 (1) (1979) 62–66.

[5] E. Cuevas, J. G alvez, O. Avalos, Introduction to optimization and metaheuristic methods, in:533Recent Metaheuristics Algorithms for Parameter Identification, Springer, 2020, pp. 1–8.

[6] M. Abdel-Basset, V. Chang, R. Mohamed, A novel equilibrium optimization algorithm for multi-517thresholding image segmentation problems, Neural Computing and Applications (2020) 1–34.

References (continued)

[7] Yang, X. S. (2014). Nature-inspired optimization algorithms. Elsevier.

[8] J. H. Holland, Genetic algorithms, Scientific american 267 (1) (1992) 66–73.

[9] Barshandeh, S., Haghzadeh, M., 2020. A new hybrid chaotic atom search optimization

based on tree-seed algorithm and Levy flight for solving optimization problems.

Eng. Comput. 1–44.

[10] Houssein, Essam H., et al. "A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation." Expert Systems with Applications 167 (2021): 114159.

[11] Houssein, Essam H., et al. "An Improved Tunicate Swarm Algorithm for Global Optimization and Image Segmentation." IEEE Access 9 (2021): 56066-56092.

THANKS FOR ATTENTION