
10.3 Fundamentals of Operator

Overloading

• As you saw in Fig. 10.1, operators provide a

concise notation for manipulating string objects.

• You can use operators with your own user-defined

types as well.

• Although C++ does not allow new operators to be

created, it does allow most existing operators to

be overloaded so that, when they’re used with

objects, they have meaning appropriate to those

objects.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• Operator overloading is not automatic—you
must write operator-overloading functions to
perform the desired operations.

• An operator is overloaded by writing a non-
static member function definition or non-
member function definition as you normally
would, except that the function name starts
with the keyword operator followed by the
symbol for the operator being overloaded.

– For example, the function name operator+
would be used to overload the addition operator
(+) for use with objects of a particular class (or
enum).

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• When operators are overloaded as member functions, they
must be non-static, because they must be called on an
object of the class and operate on that object.

• To use an operator on class objects, you must define overloaded
operator functions for that class—with three exceptions.
– The assignment operator (=) may be used with most classes to perform

memberwise assignment of the data members—each data member is
assigned from the assignment’s ―source‖ object (on the right) to the
―target‖ object (on the left).

• Memberwise assignment is dangerous for classes with pointer members, so
we’ll explicitly overload the assignment operator for such classes.

– The address operator (&) returns a pointer to the object; this operator
also can be overloaded.

– The comma operator evaluates the expression to its left then the
expression to its right, and returns the value of the latter expression.

 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• Most of C++’s operators can be overloaded.

• Figure 10.2 shows the operators that cannot be overloaded.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• The precedence of an operator cannot be changed by
overloading.
– However, parentheses can be used to force the order of evaluation

of overloaded operators in an expression.

• The associativity of an operator cannot be changed by
overloading
– if an operator normally associates from left to right, then so do all

of its overloaded versions.

• You cannot change the ―arity‖ of an operator (that is, the
number of operands an operator takes)
– overloaded unary operators remain unary operators; overloaded

binary operators remain binary operators. Operators &, *, + and -
all have both unary and binary versions; these unary and binary
versions can be separately overloaded.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• You cannot create new operators; only existing operators
can be overloaded.

• The meaning of how an operator works on values of
fundamental types cannot be changed by operator
overloading.
– For example, you cannot make the + operator subtract two ints.

Operator overloading works only with objects of user-defined types
or with a mixture of an object of a user-defined type and an object
of a fundamental type.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.3 Fundamentals of Operator

Overloading (cont.)

• Related operators, like + and +=, must be overloaded
separately.

• When overloading (), [], -> or any of the assignment
operators, the operator overloading function must be
declared as a class member.
– For all other overloadable operators, the operator overloading

functions can be member functions or non-member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.4 Overloading Binary Operators

• A binary operator can be overloaded as a non-
static member function with one parameter

or as a non-member function with two

parameters (one of those parameters must be

either a class object or a reference to a class

object).

• As a non-member function, binary operator <

must take two arguments—one of which must

be an object (or a reference to an object) of the

class. ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.5 Overloading the Binary Stream

Insertion and Stream Extraction Operators

• You can input and output fundamental-type data using the
stream extraction operator >> and the stream insertion
operator <<.

• The C++ class libraries overload these binary operators for
each fundamental type, including pointers and char *
strings.

• You can also overload these operators to perform input and
output for your own types.

• The program of Figs. 10.3–10.5 overloads these operators to
input and output PhoneNumber objects in the format
―(000) 000-0000.‖ The program assumes telephone
numbers are input correctly.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

